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Gaia SSO main characteristics

e Gaia provides high precision astrometry, and photometry
and colour/spectro-photometry

¢ astrometry at sub-mas level (per CCD) approx 0.3—20mas for mag G 7—21

e Large number of bodies
* largest set from a single instrument

e from inner near-Earth objects NEOs to trans-Neptunian TNOs
++ comets and planetary satellites

e Some constrains from design - scanning law
* no pointing but scanning, no visit planning/optimisation
e no tracking at acquisition (motion in window, trail in CCD)
e limiting magnitude modest (vs. new object)
* visibility vs. orbit (cadence)
e motion (fast), and size (large), and proximity to planet/bright object
e solar elongation and solar phase angle

* no specific target of interest (outreach)

¢ e.g. no Gaia data of 2/I Borissov, barely for Didymos, so far none for Apophis, etc.



Gaia SSO main characteristics

Gaia astrometry of asteroids (per CCD) approx 0.3—20mas
more sub-mas than uas
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Fig. 3: Error model in the AL direction for the SSO astrometry in Gaia DR3, as a function of the
G magnitude. The total error is represented, as given by the squared sum of the random and the
systematic component. The colour represents the data density (yellow/light: higher density). The
thick line and the two thin lines on each side are the quantiles corresponding to the mean and the

1-sigma level.



Gaia SSO main characteristics

e Gaia provides high precision astrometry, and photometry
and colour/spectro-photometry

e astrometry at sub-mas level (per CCD) approx 0.3—20mas for mag G 7—21

e Large number of bodies <— all sky scanning
* |argest set from a single instrument

e +everywhere: from inner near-Earth objects NEOs to trans-Neptunian TNOs
++ comets and planetary satellites

e Some constrains from design - scanning law
* no pointing but scanning, no visit planning/optimisation
* no tracking at acquisition (motion in window, trail in CCD)
¢ limiting magnitude modest (vs. new object)
e visibility vs. orbit (cadence)
* motion (fast), and size (large), and proximity to planet/bright object
e solar elongation and solar phase angle

* no specific target of interest (outreach)

e e.g. no Gaia data of 2/l Borissov, barely for Didymos, so far none for Apophis, etc.



Gaia SSO main characteristics

J for SSOs

* j.e. from astrometric stellar catalogue only
e no direct observation of an SSO at all

* reduction of observations, no systematics zonal error, better calibration
* limited by photon noise and pixel resolution centroing

e starting with DR2 with proper motions Gaia is the reference catalogue for any
ground-based astrometry

» stellar occultation/appulse

e as new paradigm of astrometric observation?
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Fig. 5. Same as Fig. 3 but for the UCAC 4 catalog. Systematics are small in positions, but traces of stellar proper motion errors in the galactic plane are visible.




astrometry from stars
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scanning old photographic plates — re-reducing old observations
with improved proper motions

=> high precision back a Century in the past



Gaia SSO main characteristics

J for SSOs

* j.e. from astrometric stellar catalogue only
e no direct observation of an SSO at all

* reduction of observations, no systematics zonal error, better calibration
* limited by photon noise and pixel resolution centroing

e starting with DR2 with proper motions Gaia is the reference catalogue for any
ground-based astrometry

» stellar occultation/appulse

e as new paradigm of astrometric observation?



astrometry from stars

Stellar occultation as astrometric observation

With high precision on the star’s position+parallax+proper
motion+RV
error is dominated by angular size of the object, which can be

+arbitrarily small (vs. apparent size of star)
approx 100x more precise than classical g-b astrom.

=> Interest for specific targets

Direct astrometry from a stellar occultation of an NEO
is as valuable as Arecibo/Goldstone radar tracking!
and mostly complementary

-> Desmars et al. 2023



astrometry from stars
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Fig.1 Uncertainty in geocentric distance over 2020-2030 using 4 datasets

Orbit of NEO/PHA asteroid Apophis with/wo stellar occultation astrometry:
add a few (6) occultation astrometry

=> stellar occultation as valuable as radar, and complementary

=> determination Yarko. param A_2



Gaia SSO main characteristics

e And/Or direct observations of SSOs

* include/adapt data acquisition and data reduction pipeline
to our ‘beloved’ moving objects
at early stage



Gaia and context

Hipparcos/Tycho 1989 —19983 : 48 aster (+satellites+planets) ~10mas
astrometry

Gaia 2014 —20257? : 350k asteroids ; sub-mas precision

other surveys of SSOs

* |R and visible ; mostly detection of NEOs (Planetary Defense) ;
some serendipity (Euclid)

* largest survey to come
e faint objects NEOs, MBAs, far TNOs, ISOs

Most objects will be known (down to to V=24)



Toward pas astrometry

Some challenges — depending on actual epoch and final astrom. accuracy

* Need of improved dynamical modelling (computed position)
¢ planetary and asteroids perturbations
¢ mutual random perturbations
¢ non-grav forces
e relativistic acceleration
¢ from computed CoM (t)_TCB to observed centroid ‘position’ at time t

 if not point source, need photometry for shape/spin model

e Which effects? to what order?
¢ deflection of light depends on true distance
¢ relativistic perturbation of Sun and planets and cross-term

* relativistic aberration; effect of ref frames, time scales; transformations, ...

¢ Numerical integration of equations of motions
¢ no more simple perturbed 2-body problem
¢ more variational equations

¢ iterations (and convergence)



Toward pas astrometry

simplified GR from Sun (Gaia DPAC)

perturbed 2BP (heliocentric) all perturbations add linearly
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Toward pas astrometry

e and... all other perturbations (J2, non-grav, ...)
* and... all partial derivatives in numerical integration

e and... to what order and cross-terms in developments



For what objectives?

e 4 Scanning or Pointing ? what observation? what strategy? how many/what objects?

by pointing | mean pointing a specific SSO !

anyway, our SSO objects are mostly near the ecliptic... cf. LSST Northern spur
what integration time ? pixel size ?

nIR => more distant - redder objects

Photometry, spectro-photometry (nota near IR interesting for SSO)

e 1. High precision astrometry

‘individual’ and global’ effects : per object /\ all objects
detect subtle effects (spin/shape, Yarkovsky, binaries), compute IP risk assessment of PHA, ...

grav (aster mass) and non grav (active aster vs comets) effects ; test gravitation in Solar System, ...

e 2. Number/variety of targets, spread through Solar System

avoid systematic effects — averaging errors
=> less precision but less biases

e 3. Long-term astrometry and sparse photometry

extend baseline to Gaia data

good for outer orbit objects (with larger orbital period)

secular, quadratic, and long-period effects

long-term dynamics of planetary satellites (dissipation, formation)
realisation of a dynamically non-rotating frame

dG/dt, ref. frames, relativistic effects, ...

local test of GR, gravitation to higher precision

¢ Testing gravity — Local test of GR i.e. in Solar System (small v/c; GM/c/2)

in contrast to a hypothetic/potential dedicated space probe for GR test

maybe not better than other local tests, but independent, with different hypothesis/modelling
(better to have multiple independent tests if you want to contradict Einstein GR)



For what objectives?

Gaia type simulation - Variance analysis (Hees et al.):

De-correlated Solar J2 and PPN parameter (3;
Variation dGM/dt
Strong Equivalence Principle through the n parameter.

Test Standard Model Extension

“constrain Lorentz violation Table 1. Sensitivity on the SME gravity parameters.
through the SME formalism” SME parameters | Sensitivity (o)
de-correlate parameters 8§ 5 9 x 10~
§XX 4 5YY _ 2572 2 x 1011
5 4 x 1012
X% 2510
5 4 x 10712
sTX 1x 108
gt 2x 1078
(Hees et al. 2015) s 4 %1078




For what objectives?
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e now with 390k asteroids; 2D precision down ’;6 200 pas;

.

e over Syears then over 10 years (dashed line)

Table 2. Statistical uncertainties reachable using Gaia observations to determine the SME s"”
coefficients considering a 5 years nominal mission and an extended mission of 10 years.

§XX _§YY §XX +§YY _2§ZZ §XY §XZ §YZ §TX §TY §TZ

1077 [107'%) [107'%] [107'%] [107'%] [107°] [107°] [1077]

5 years mission 3.8 6.5 1.7 0.93 1.7 5.7 8.9 16.7
10 years mission 1.5 2.1 0.71 0.38 0.59 1.1 2.1 4.1

(Hees et al. 2018 |AUSs)



a ‘final’ note

e Tatiana Muraveva (Bologna) asked Chat GPT
What is Gaia NIR impact on... ?

e it’s important to note that the specific advantages and impacts of a Gai NIR
missions on the study of

would depend on the mission’s design, capabilities, and scientific objectives

* Indeed! and a sometime complicated figure of merit to achieve all scientific
objectives together

e can Gaia NIR rely on Gaia for a more relaxed scanning law / cadence
procedure?

PS : can ESA, Horizon Europe, COST, etc. provide us with a chat GPT.4 licence?






* Wwe were expecting:
* more (=1500) NEOs

e more discover of Atira

NEOs

Table 2: Object types in DR3.

Object type number of objects
Atira 1
Aten 43
Apollo 230
Amor 173
Mars Crossers 1550
Inner Main Belt 3305
Main Belt 144 975
Outer Main Belt 4940
Jupiter Trojans 1550
Centaurs 8
TNOs 24
Others 2
Total asteroids 156 801
Unmatched moving objects 1320
Planetary satellites 31
Total 158 152




