

GAIANIR PHOTOMETRIC SYSTEM

J.M. Carrasco, C. Jordi, E. Masana, M. Monguió & UB team

PHOTOMETRY

- Chromatic corrections of the astrometric observations.
- All-sky NIR survey at the mmag accuracy level → less extinctionlimited CMDs.
- Astrophysical classification (stars, galaxy, quasars, etc.).
- Astrophysical parameterisation (interstellar reddening, effective temperatures of stars, surface gravities, chemical abundances, photometric redshifts of quasars, ...).
- Photometric distances for distant sources (when large parallax relative error).
- Multiwavelength variability of sources.

GAIA VS GAIANIR

GaiaNIR Focal Plane

D. Hobbs (IAU, 2022)

INSTRUMENT

GN-TN-UB-CJ-001 (05/07/2017)

- 16 HgCdTe detectors (14 are now foreseen)
- Vertical lines are passband limits options assumed by CJ-001

400-1600, 400-1800, 400-2000, 400-2400
600-1600, 600-1800, 600-2000, 600-2400
700-1600, 700-1800, 700-2000, 700-2400
800-1600, 800-1800, 800-2000, 800-2400

Blue rectangles show the passbands limits proposed by D. Hobbs (IAU, 2022)

COLOUR-COLOUR RELATIONSHIPS

G-NIR = f(V-I) for disc & halo sky directions (GUMS)

colour = $a_0 + a_1(V - I) + a_2(V - I)^2 + a_3(V - I)^3$

disk: colour	\mathfrak{a}_0	\mathfrak{a}_1	\mathfrak{a}_2	\mathfrak{a}_3	σ
$G - NIR_4_{16}$	-0.0953	0.8002	0.0043	-0.0012	0.11
$G - NIR_4_{18}$	-0.1067	0.8911	0.0016	-0.0009	0.14
$G - NIR_4_{20}$	-0.1119	0.9532	0.0021	-0.0009	0.15
$G - NIR_4_24$	-0.1156	1.0168	0.0041	-0.0010	0.16
$G - NIR_6_{16}$	-0.0704	1.2242	-0.0899	0.0050	0.10
$G - NIR_6_{18}$	-0.0829	1.3027	-0.0906	0.0052	0.13
$G - NIR_6_{20}$	-0.0884	1.3545	-0.0885	0.0051	0.14
$G - NIR_6_24$	-0.0928	1.4071	-0.0846	0.0049	0.14
$G - NIR_7_{16}$	-0.0767	1.3797	-0.1207	0.0069	0.10
$G - NIR_7_{18}$	-0.0887	1.4528	-0.1211	0.0071	0.13
$G - NIR_7_{20}$	-0.0937	1.5003	-0.1185	0.0070	0.14
$G - NIR_7_24$	-0.0976	1.5481	-0.1141	0.0068	0.14
$G - NIR_8_{16}$	-0.0861	1.5112	-0.1443	0.0083	0.10
$G - NIR_8_{18}$	-0.0976	1.5799	-0.1447	0.0085	0.13
$G - NIR_8_{20}$	-0.1019	1.6238	-0.1420	0.0084	0.14
$G - NIR_8_24$	-0.1051	1.6676	-0.1373	0.0082	0.14
G – J2MASS	-0.0761	1.6967	-0.1713	0.0089	0.08
G - H2MASS	-0.1362	2.0820	-0.2031	0.0113	0.19
G – K2MASS	-0.1232	2.2214	-0.1975	0.0110	0.17

10 magnitudes fainter for Gaia than for Gaia-NIR!!

 $A_v = 20 \text{ mag}$

ZEROPOINTS AND LIMITING MAGNITUDES

GN-TN-UB-CJ-001

- VEGAMAG zeropoint
- G NIR = 0 for an AOV type star (see Jordi et al 2010).
- Table shows magnitudes at which 1 e-/s is detected (zeropoint) and magnitudes at which the same amount of e-/s are detected as with G=21 mag.

Detector	$1 \mathrm{e}^{-}/\mathrm{s}$	magnitude
		equivalent to $G = 21$
G	25.6085	21.00000
NIR_4_16	25.9055	21.29700
NIR_4_18	25.9447	21.33620
NIR_4_20	25.9746	21.36610
NIR_4_24	26.0078	21.39930
NIR_6_16	25.3194	20.71091
NIR_6_18	25.3864	20.77790
NIR_6_20	25.4354	20.82690
NIR_6_24	25.4895	20.88100
NIR_7_16	25.0801	20.47160
NIR_7_18	25.1630	20.55450
NIR_7_20	25.2230	20.61450
NIR_7_24	25.2883	20.67980
NIR_8_16	24.8475	20.23900
NIR_8_18	24.9492	20.34070
NIR_8_20	25.0218	20.41323
NIR_8_24	25.1000	20.49150

Galactic pole: (l,b)=(0,89), r<0.68°

PHOTOMETRY SIMULATIONS

Galactic anticenter: (l,b)=(180,0), r<0.68°

Good general agreement. Excess of bright sources in our simulations with respect to 2MASS observations

We consider stars in multiple systems as detectable

Galactic center 1: (l,b)=(0,0), r<0.34° Galactic center 2: (l,b)=(0,0), r<0.0253°

2MASS (Skrutskie+2006): SNR=10 for J<15.8, H<15.1, Ks<14.3

Besançon Galaxy Model (Robin et al 2012)

OVERLAP WITH GAIA

G=21 corresponds to NIR_8_24=20.49 G=20.75 corresponds to NIR_8_24=20.24

OVERLAP WITH GAIA

STELLAR DENSITY (STARS/DEG²)

	Galactic	Galactic	Galactic
	pole	anticentre	centre
(l,b)	(0, 89)	(180, 0)	(0, 0)
G	2529	63 1 18	234701
NIR_4_16	4225	139979	2762126
NIR_4_18	4436	155756	4227884
NIR_4_20	4592	169042	6342556
NIR_4_24	4795	185 001	9751422
NIR_6_16	4075	140 104	2722041
NIR_6_18	4302	156714	4077687
NIR_6_20	4449	170308	6 008 123
NIR_6_24	4643	186774	9 273 894
NIR_7_16	3984	138 836	2724441
NIR_7_18	4216	155 842	4 040 296
NIR_7_20	4384	169737	5959973
NIR_7_24	4572	186 465	9 218 208
NIR_8_16	3900	136 420	2727783
NIR_8_18	4103	153 929	4 023 110
NIR_8_20	4297	168 160	5904245
NIR_8_24	4487	185 263	9 145 361

G=21 mag was considered

Variation with galactic latitude

3xGaia in the GC

STELLAR DENSITY DEPENDENCY WITH SKY POSITION

Variation with galactic longitude

ity_G

Less overlapping with Gaia \rightarrow New sources added not previously studied

OPTIMISATION OF THE PHOTOMETRIC SYSTEM

KEY SCIENTIFIC GOALS

- Key type of sources to be studied? Galactic populations?
- Key astrophysical parameters to be recovered for each population? Stellar parameters? QSO photometric redshift?
 BD? WD? Exoplanets? Asteroids? RR Lyrae?
- Precission needed?
- Infrared spectral information to be recovered? Spectral libraries for simulations? Extinction law?
- Any restrictions from centroid determination (No gaps? Overlapping?)

IR PHOTOMETRIC CATALOGS

Survey	Sky coverage	Wavelength range (µm)	Faint limit	Angular resolution (arcsec)
GaiaNIR	All sky survey	0.8-2.5	21 (TBD)	10 ⁻⁹ (TBD)
JASMINE	Galactic bulge	1.1-1.7 (H _w + JH)	15	0.535
2MASS	All sky survey	1.05-2.4 (JHK _s)	H=15.4	0.8-10.9
VVV	Galactic bulge	0.8-2.4 (ZYJHK _s)	H=17.3	0.6
AIIWISE	All sky survey	2-30 ($W_1 W_2 W_3 W_4$)	H=14.5	6-12
DENIS	South=20000 deg ²	iJK	K=12	3
UKIDSS	North=7500 deg ²	YJHK	K=18.4	0.9
VISTA VHS	South=18000 deg ²	YJK	K=18.4	0.7
Nancy Roman	All sky pointing	0.5-2.3	28 (1h)	0.1
JWST	All sky pointing	0.6-2.3 (NIRCam)	26-29	0.07
Euclid	1/3 of the sky	0.92-2.02 (YJH)	24.5	0.3
HST WFC3	All sky pointing	0.85-1.7	J=27 (1h)	0.1

JWST NIRCAM FILTERS

F090W - General purpose F115W - General purpose F140M - Cool stars, H₂O, CH₄ F150W - General purpose F150W2 - Blocking filter for F162M, F164N, and DHS F162M - Cool Stars, off-band for H₂O F164N - [Fell] F182M - Cool stars, H₂O, CH₄ F187N - Pa-alpha F200W - General purpose F210M - H₂O, CH₄ **F212N - H**₂

NIRCam Filters

FIGURE OF MERIT

See Gaia PWG technical reports:

= index for the different ST

- = index for the different filters in a given PS
- = index for the different AP for which a PS is optimized
- = AP k (defining the vector \boldsymbol{p})
- = normalized flux of ST i in filter j

GAIA−LL−047 → PWG−AB−003 → UB-PWG-028, UB-PWG-029

Sensitivity matrix Covariance matrix $\mathbf{C}_{\boldsymbol{\phi}} = \operatorname{diag}(\epsilon_{j}^{-2}) \qquad \mathbf{S}_{i} = \begin{bmatrix} \partial \phi_{i1} / \partial p_{1} & \cdots & \partial \phi_{i1} / \partial p_{K} \\ \vdots & \ddots & \vdots \\ \partial \phi_{iJ} / \partial p_{1} & \cdots & \partial \phi_{iJ} / \partial p_{K} \end{bmatrix}_{\boldsymbol{p} = \boldsymbol{p}_{i}}$ Prior matrix (can include parallax) $\mathbf{B} = \operatorname{diag}(\sigma_{k, \operatorname{prior}}^{-2})$ Achieved error for AP k and ST i Posterior covariance $f(x) = (1 + x^{2n})^{-1/n}$ $\mathbf{C}_{\boldsymbol{p},\text{post}} = \left(\mathbf{B} + \mathbf{S}^{\mathrm{T}}\mathbf{C}_{\boldsymbol{\phi}}^{-1}\mathbf{S}\right)^{-1} \rightarrow \sigma_{ik,\text{post}} = [\mathbf{C}_{\mathbf{p},\text{post}}]_{kk}$ n = 3FoM for ST i Normalised FoM **Global FoM** $\bullet Q = \sum_{i} w_i Q_i \quad ---- \Rightarrow \widehat{Q} = \frac{\forall}{\sum_{i} w_{i}}$ $Q_i = \sum w_k f(\sigma_{ik, \text{post}} / \sigma_{ik, \text{goal}}) - --$

 p_k

 ϕ_{ii}

FILTERS OR SPECTROPHOTOMETRY?

SPECTROPHOTOMETRY AS IN GAIA?

FILTERS OR SPECTROPHOTOMETRY?

- Spectrophotometry provides better nominal spectral resolution elements, but...
- Passbands provide clearer wavelength information (no contamination from neighbouring wavelengths due to LSF).
- Spectrophotometry provides lower angular resolution in crowded fields (more blending) which is more critical in the IR.
- More background contributions in spectra.
- Photometric passbands get better SNR for faint sources (more stars are detected).

NEIGHBOURS INFLUENCE (J=2 CASE)

Carrasco et al (2021)

EXTERNAL INSTRUMENT MATRIX

Carrasco et al (2021)

FUTURE DEVELOPMENTS

- Improve the Galaxy model to the infrared type of sources (extinction, low mass stars, large distance extension, ...).
- Definition of a list of key scientific targets (KST) for GaiaNIR
- Optimisation of the filters to the spectral features present in the KST
- Test for the scientific benefit of extending GaiaNIR to shorter wavelengths (400 nm vs 800 nm?).
- Study of spectrophotometry.

THANK YOU