70 years with astrometry From meridian circles to Gaia and beyond

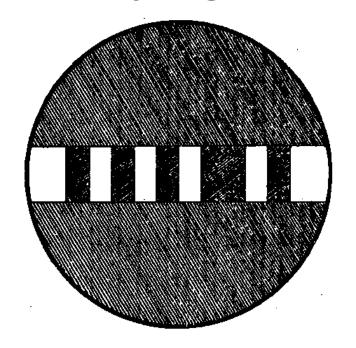
By Erik Høg

For the meeting in Lund in July 2023

1953-1973

Basis for space astrometry was created

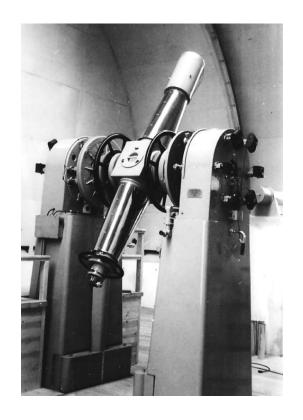
thanks to meridian circles in Copenhagen, Brorfelde, Hamburg, and Lund and to the vision of Pierre Lacroute about astrometry from space


1974-2023

Hipparcos and Gaia era

building on the astrometric tradition in Europe and on the ESA support

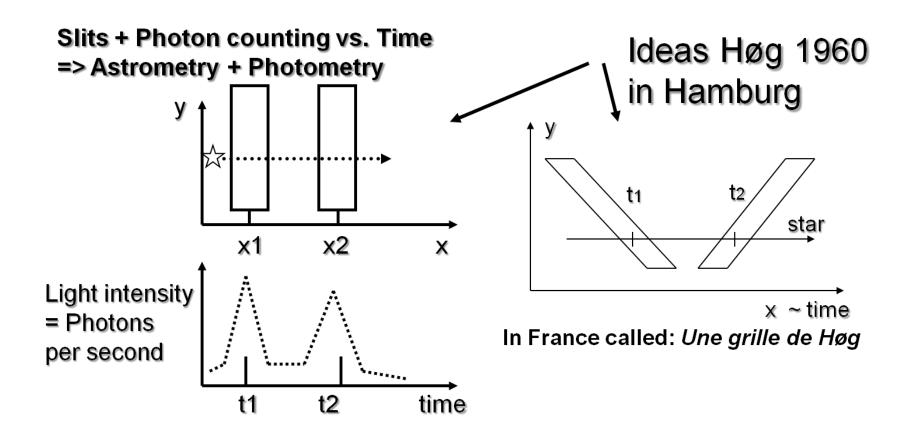
Copenhagen meridian circle Photoelectric astrometry began in 1925



In 1953 I learnt of
Bengt Strömgren's Experiments with
photoelectric recording of transits
Vierteljahrschrift der
2023 Astron. Gesellschaft 1933

Bengt Strömgren (1957)

Bengt Strömgren professor of astronomy in 1940 Astrophysicist but a supporter of astrometry He ordered a new meridian circle for a new Danish observatory 50 km from Copenhagen Erected 1953 at Brorfelde 50 km from Copenhagen


Brorfelde 1955 From top of the meridian building towards the still empty observatory houses

As a student of 22 years in 1954 I was sent to work with this instrument at Brorfelde, quite alone in the countryside Slept sometimes in a haystack when clouds came I became fascinated by the instrument and by astrometry

 From 1958 I stayed in Hamburg wanting of course to become an astrophysicist 2023 - Erik Høg

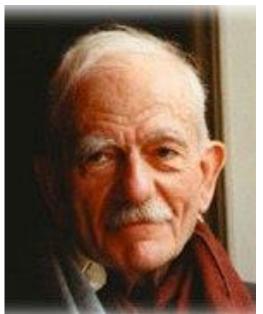
1960: Photon counting astrometry

Erik 1963

2020

Photon counting astrometry

The new astrometric method was implemented on the Hamburg meridian circle 1960-67. - It was operated for 5 years in Perth (Western Australia) resulting in 1976 in a catalogue of 25,000 stars with an accuracy of ±150 mas


1967
Hamburg Observatory
Meridian circle
Digitized, semi-automatic

Photon counting astrometry in space

In France, the new method was adopted as basic for the great vision of a space-based astrometric mission by Pierre Lacroute, the father of space astrometry
His work 1964-74 led him to propose a scanning satellite with a split mirror

Pierre Lacroute

Jean Kovalevsky

2023 - Erik Høg

Meridian Circle in Lund

1973 Lennart Lindegren showed me the MC He had become fascinated by the instrument and by astrometry

I gave him the observations of planets from the MC in Australia

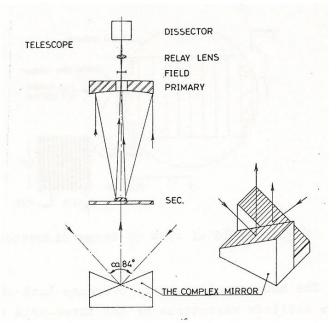
1973: With Lennart on board, the stage was set...

He made a brillant analysis of the planets

1976 He described the three-step method in four weeks and joined the Study Team...

2023 MC Erik Lennart

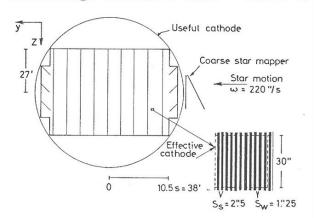
International Symposium on Space Astrometry in Frascati, Italy, 22-23 October 1974


Conclusion: Set up a group for further studies in 1975

The automatic meridian circle from Brorfelde was moved to La Palma in 1984

1975: Hipparcos design

1975: Study group meeting changed my mind about satellite astrometry



Høg 1975-1976:

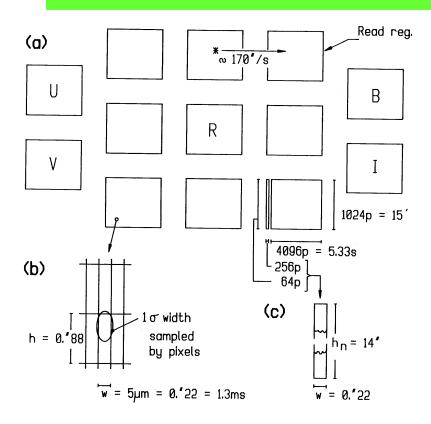
Expected 100 000 stars ~4 mas with 16x16 cm aperture

One-dimensional measurement

One image dissector tube + one PM

IAU GA 1976, Highlights of Astr., p.361

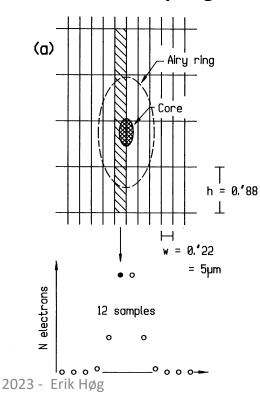
1976: Lennart Lindegren joined

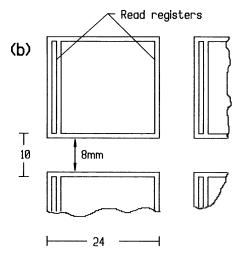

1980: Hipparcos approval, 1981: Michael Perryman project scientist

1989: Launch, 1997: Catalogue with 118 000 stars ±1 mas ±1 mas/year

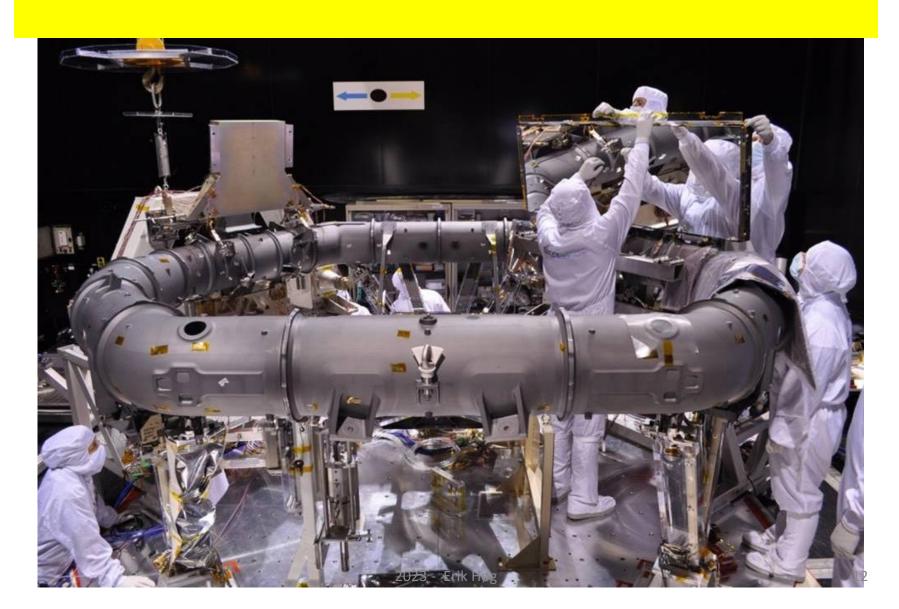
2017: 2400 citations of the Hipparcos Catalogue

2000: Tycho-2 with 2.5 million brightest stars in the sky. 2023: 2472 citations


Focal plane of Roemer - Høg Sept. 1992 presented at an IAU Symposium in Shanghai



2 telescopes 26 cm Ø 5 years mission Astrometry +-0.1 mas at 14 mag Photometry +-0.006 mag in V ... CCDs, direct imaging, elongated pixels, TDI, short CCDs for bright stars, sampling windows

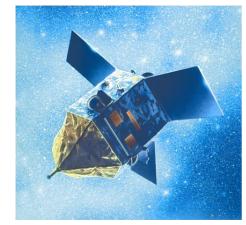

Always reporting in the Hipparcos Science Team ...

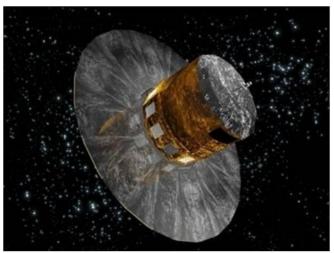
Sampling and CCDs

Gaia M1 and torus 2011

Astrometry satellites

1973 found Lennart


1975 my design of a scanning satellite 1989 Hipparcos launch


1992 my design of a satellite with CCD detectors

Launched in 2013 as **Gaia**We now have 5000 times more accurate positions than we had 30 years ago

Also parallaxes, proper motions, photometry, and spectroscopy

A revolution in all branches of astronomy with almost 2 billion stars

My proposal to ESA in 2013: Gaia successor in 20 years

Similar astrometric performance as Gaia

Proper motions with 10 times smaller errors using Gaia positions as 1st epoch Parallaxes unaffected by motion in binaries High-resolution photometry 140 mas FWHM

Altogether:

A new astrometric foundation of astrophysics

Gaia successor proposed in 2013

2015 David Hobbs joined

Observe obscured regions and very red stars with GaiaNIR

12 billion stars expected

Launch about 2045 probable

Gaia positions as first epoch + GaiaNIR -> 20 times more accurate proper motions

A new revolution for dynamics beyond Gaia

2023 - Erik Høg 15

2013: Towards a Gaia successor

Much higher astrometric performance than Gaia

There were other considerations than mine around 2013 about a successor in which I was not involved at all

Anthony Brown led a proposal for (global) submicroarcsec astrometry

No mission concept was presented, but the challenges on the road were analyzed

NIR sensitivity considered

Gaia successor proposed in 2013

2015 David Hobbs joined

Observe obscured regions and very red stars with GaiaNIR

12 billion stars expected

Launch about 2045 probable

Gaia positions as first epoch + GaiaNIR -> 20 times more accurate proper motions

A new revolution for dynamics beyond Gaia

2023 - Erik Høg 17