

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Explore the population of disc metal-rich RR Lyrae stars with GaiaNIR **Giuliano Iorio University of Padova**

- Bobrick&lorio+2022, arXiv:2208.04332 https://arxiv.org/abs/2208.04332
- Iorio&Belokurov, 2021, MNRAS, 502, 5686

https://academic.oup.com/mnras/article/502/4/5686/6066514

Science and technology roadmap for µas studies of the Milky Way: 18-20 Jul 2023, Lund

A special thanks to **MW-Gaia Cost action**

- - Å

Alexey Bobrick, Vasily Belokurov, Joris Vos, Maja Vuckovic, Nicola Giacobbo

Based on:

RR Lyrae stars (RRLs) in the disc: a science case for Gaia NIR?

- **RRL** studies focused mostly in the Bulge/Halo regions
- **RRL** in the disc challenging to observe and not an "hot topic" (so far)
- Only RRL astrometric information in the NIR from VVV (VIRAC, <u>Smith+18</u>) and OGLE (Sumi+18), but mostly in the Bulge

GaiaNIR could produce an unprecedented astrometric survey of RRLs in the disc

Do they represent an interesting scientific case?

The RR Lyrae in the Milky Way

The "Classical textbook definition" (e.g. Catelan09, Smith04)

- Low-mass (<1 Msun) core He burning stars
- Old (>10 Gyr) and metal-poor ([Fe/H]<-1)
 popll stars
- Tracers of old populations
 (Halo, Globular clusters, Thick disc, Streams)

A Gaia view of the RR Lyrae in the Milky Way

Data: Gaia DR 3 RR Lyrae (Bobrick&lorio+22)

(See also Layden+95, Muraveva+18, Prudil+20, Zinn+20, Crestani+21, Garofalo+22)

A Gaia view of the RR Lyrae in the Milky Way

Data: Gaia DR 2 RR Lyrae (lorio&Belokurov21)

Note: each point shows the best rotating kinematical model for RRLs binned on R-z

Kinematics of Metal-rich RR Lyrae consistent with intermediate-young (< 10 Gyr) Thin-Disc populations

Confirm and extend what we already found in the solar neighborhood (e.g. Layden+94, Pietrukowicz+20, Prudil+20, Zinn+21)

How to form a metal-rich RR Lyrae star?

To balance the higher envelope opacity metal-rich RR Lyrae should have less massive envelope with respect to the metal-poor ones (see e.g. Bono+98).

 $\dot{M}_{\rm RGB} \propto \eta \frac{RL}{M}$ (Kudritzki&Reimers78)

Higher wind mass loss during RGB (>0.4-0.5 Msun)

Hotter core He burning stars Challenge:

 High RGB mass loss not supported by observations (<0.3 Msun,eta<0.6)

(See e.g. Salaris+13, Origlia+14, Savino+19, Tailo+22)

Most of the RR Lyrae in the MW should be metal-rich

An alternative formation channel: Binary mass loss

To balance the higher envelope opacity metal-rich RR Lyrae should have less massive envelope with respect to the metal-poor ones (see e.g. Bono+98).

~10-30% of Sun-like stars are in a binary system (with a lower mass companion) Offner+22,Moe+18, Moe&Distefano17

lost

envelope

ч—

Amount o

Credit: Bobrick&lorio+22, see also Karzmarek+17

An alternative formation channel: Binary mass loss

Simulation setup (Vos+20): 2060 binaries

- Detailed stellar evolution models by MESA (Paxton+13-19)
- Standard RLO mass transfer model
- Close binary (100<P/days<700)
- Solar like stars (0.7<M/Msun<2)
- Besançon Galactic population (Robin+03)
 Close binary fraction 25% (Moe+19)

Binary made RR Lyrae stars

Consistent with Luminosity-metallicity relation of RRLs: Binary made RRLs are fainter than metal-poor ones

(See e.g. Muraveva+20, Garofalo+22)

Galactic population of binary made RR Lyrae stars

Considering the Besancon model:

- ~ 50,000 in the Thin-Disc
- 0 in the Halo and Thick-Disc
- ~12,000 in the Bulge
- Consistent with the RRL Metal-rich population
- Consistent with intermediate-young populations

Model prediction: Metal-rich RRLs have a binary companion

Metal-rich RR Lyrae have a companion

- ~1 order of magnitude fainter

- P ~1000-2000 days (Most of Gaia binaries < 1000 days)
- Low orbital velocity (< 10 km/s) (RRL pulsations ~50 km/s)

Challenging to observe!

Only two confirmed RRLs in binary systems:

- Tu Uma (halo RRL, wide orbit P~8000 days) (see e.g. Liska+16)

- BEP (Binary Evolution Pulsator), peculiar object (see e.g. Soszynski+09, Pietrzynski+12, Smolec+13)

+ candidates (Liska+16,Kervella+19,Hajdu+21)

11

Why GaiaNIR

GaiaNIR could produce an unprecedented astrometric survey of RRLs in the disc

- Increase the sample:
 - Observe variable stars very close to the Galactic plane, where we expect to find most of the metal-rich RRLs.
- Improve the distance/proper motion estimates (Muraveva talk)
 - Period-Luminosity relation in the K-band
 - Less dependence on the reddening correction
- -If billions of RVs will be available:
 - Precise and direct kinematics estimate

GaiaNIR can surely help in investigating the nature of metal-rich RRLs in the disc

Is this a interesting scientific case? What we can learn? Win/Win scenario

If the young-population/binary formation channel are confirmed:

- Paradigma shift: RRLs are not only pop. II stars. Tracers of intermediate-young populations
- Exceptional probes to study the details of the mass transfer in binary systems

If the young-population/binary formation channel is/are not confirmed:

- (If confirmed young) Exploration of new formation channels (He-enrichment, rotation, revised stellar evolution)
- (If confirmed old) Why a very old population is kinematically consistent with the young thin-disc? Why it is enriched in metals? Challenge for MW formation models. (Radial migration from the inner bulge? Cristina Chiappini talk)
- Why no RRLs in binary? Do we need to revise mass transfer in binaries?

Takeaway messages

- Metal-rich RRLs in the disc are ubiquitous
- formation scenario.
- GaiaNIR is the perfect instrument to solve this mystery

- Their existence and kinematics represent a challenge for the classical RRL

- The solution of this conundrum will have significant implications in the understanding of the stellar and binary evolution and on the formation of the MW.

Backup Slides

RR Lyrae in metal-rich GCs

Why we do not see RR Lyrae in metal-rich GCs

- Following our prediction: ~1E4 binary made RRLs over 1E10-1E11 solar masses in the disc
- This mean a formation efficiency of 1E-6 1E-7 1/Msun
- GC mass is 1E5-1E6, we expect 0 or a few RRLs that is actually consistent with the observations:
- NGC5927, NGC6352, NGC6496, NGC6838, no candidates
- 47Tuc, NGC6304, NGC6366, NGC6624, NGC6337, few candidates
- Only exceptions: several RRLs in NGC6441, NGC 6338 but they are He-enriched clusters

He-enriched RRL

winds) metal-rich star to enter in the IS.

This what actually observed in metal-rich He-enriched GCs: NGC6441, NGC 6338*

Challenge:

- RR Lyrae Period not consistent with metal-rich RRL in the field

- How can we explain that the disc is "filled" by a population of highly He-enhanced stars?

*recent works claim that there are no signatures of He-enrichment in the RRLs of NGC6441 (see e.g. <u>Bhardwaj+22</u>)

He-enriched envelopes produce hotter stars and can help (in combination with stellar

Metal-rich RRLs in the solar neighborhood

Zinn+20

Circle: alpha-poor Asterisk: alpha-rich

Metal-rich RRLs alpha elements

Crestani+21

Metal-rich RRLs in the stellar disc from Gaia (DR2)

Disc-lile RRLs in the stellar disc from Gaia (DR2)

Iorio&Belokurov21

21

The RR Lyrae in the Milky Way

VVV J172028.52-393602.4

J band mag: 15.5

G band mag: 20.0

Binary-made RR Lyrae

Binary-made RR Lyrae companion

12.5 v_{orb}, km/s

Binary-made RR Lyrae: comparison with Karczamarek+17

Their conclusion: Only 0.8% of RR Lyrae are binary made

However:

- They consider that 20% of stars between 0.8-0.9 produce a single made RRL independently of the metallicity

Correcting for the effect of metallicity: - Their and our results agree within 30%

Varying wind mass-loss

Wind mass-loss from observations

Catalogue	Nmatch	N _{clean}	$f_{ m disc/halo}$	$f_{\rm rich/poor}$	$f_{\rm disc/halo, control}$	$f_{\rm rich/poor, control}$
RR Lyrae yrBinCan (Liška et al. 2016a)	68	22	0.24 (4:17)	0.50 (10:20)	0.19 (10:53)	0.20 (40:200)
Hajdu et al. (2021)†	52	0	-	0 (0:3)	0.34 (14:41)	0.52 (59:114)
Kervella et al. (2019a)	139	73	0.51 (23:45)	0.27 (18:67)	0.34 (25:73)	0.16 (22:133)
Kervella et al. (2019b)	7	3	2 (2:1)	2 (2:1)	0.8 (8:10)	0.17 (16:95)
Prudil et al. (2019)†	8	1	0 (0:1)	0 (0:1)	0.63 (5:8)	0.43 (17:40)

Binary candidates

Simulations setup

Property	Functional Form	Parameter Range	Comments and references
IMF	$\mathrm{d}N/\mathrm{d}M_\star \propto M_\star^{-lpha}$	$\alpha = \begin{cases} 1.3 & \text{for } 0.09 \mathrm{M}_{\odot} < M_{\star} < 0.5 \mathrm{M}_{\odot} \\ 1.8 & \text{for } 0.5 \mathrm{M}_{\odot} < M_{\star} < 1.53 \mathrm{M}_{\odot} \\ 3.2 & \text{for } 1.53 \mathrm{M}_{\odot} < M_{\star} < 150 \mathrm{M}_{\odot} \end{cases}$	Kroupa & Haywood v6 model Continuous, normalised (Czekaj et al. 2014) (Kroupa 2008; Haywood et al. 1997)
$M_{\rm primary, simulated}$	—	$0.7-2.1M_{\odot}$	All degenerately-igniting primaries
$q_{\text{init}} \equiv \frac{M_{\text{primary}}}{M_{\text{secondary}}}$	$\mathrm{d}N_{\mathrm{binary}}/\mathrm{d}q_{\mathrm{init}}^{-1} \propto 1$	$0 < q_{\rm init}^{-1} < 1$	(Raghavan et al. 2010)
$q_{\rm init, binary-made}$	—	$1 < q_{\rm init} < 3$	All stably transferring binaries
$P_{\rm orb}$	$\frac{\mathrm{d}P_{\mathrm{orb}}}{\mathrm{d}\log P_{\mathrm{orb}}} \propto 1$	$1 < P_{\rm orb} < 10^4 {\rm d}$	Close binaries (Abt 1983)
$P_{\rm orb, binary-made}$	_	$100 \mathrm{d} < P_{\mathrm{orb}} < 700 \mathrm{d}$	All degenerately-igniting interacting primaries
$a_{\rm orb, single-made}$	—	$1.2 a_{\rm RLO,max,RGB} < a_{\rm orb} < 2 \cdot 10^4 {\rm AU}$	All non-interacting primaries (Abt 1983)
Metallicity	$[Fe/H] \propto \mathcal{N}([Fe/H]_i, \sigma_{[Fe/H],i})$	_	Galactic metallicity distribution, Table 1
Binary prob-ty	0.45	_	Galactic binary fraction (Abt 1983)
Close binary prob-ty	0.25.0.40		Close binary fraction at [Fe/H] ≈ -0.2 and
crose childry proce ty	0.20, 0.10		halo metallicity, respectively (Moe et al. 2019)
Age cut	—	$-300\mathrm{Myr} < t_{\mathrm{RGBtip}} - t_{\mathrm{now}} < 700\mathrm{Myr}$	All present-day core-He burning stars
Mass loss parameters	$\dot{M}_{\rm accretor} = (1 - \alpha - \beta - \delta) \dot{M}_{\rm lost} ^{\dagger}$	$\beta = 1$ if over – spinning or $\tau_{acc} < \tau_{K-H}$	Effectively fully non-conservative
		$\{\beta = 0 \text{ otherwise}\}$	When $M \gtrsim 10^{\circ} - 10^{\circ} M_{\odot}/yr$ Mass loss with L of accretor
		$\alpha = \gamma = \delta = 0$ always	(Tauris & van den Heuvel 2006)

Besançon model - predictions

Galactic bin	Age Gyr	Mass fraction	[Fe/H]
Thin Disc - Bin 1	0-0.15	0.030	0.01 ± 0.12
Thin Disc - Bin 2	0.15 - 1	0.069	0.03 ± 0.12
Thin Disc - Bin 3	1 – 2	0.076	0.03 ± 0.10
Thin Disc - Bin 4	2 – 3	0.072	0.01 ± 0.11
Thin Disc - Bin 5	3 – 5	0.132	-0.07 ± 0.18
Thin Disc - Bin 6	5 – 7	0.126	-0.14 ± 0.17
Thin Disc - Bin 7	7 – 10	0.171	-0.37 ± 0.20
Bulge	8 - 10	0.192	0.00 ± 0.40
Thick Disc	10	0.123	-0.78 ± 0.30
Halo	14	0.008	-1.78 ± 0.50

Туре	Thin disc	Thick disc	Bulge	Halo	Total
R _{tot} , kyr ⁻¹	0:0.51	0:0	0:0.13	9.46 : 0	9.46 : 0.63
N _{tot}	$0:48\ 000$	0:0	0:10 500	523 400 : 0	523 400 : 58 500
$n_{\rm loc}$, kpc ⁻³	0:43.6	0:0	0:0	9.2:0	9.2:43.6
$N_{500 pc}$	0:13.2	0:0	0:0	4.8:0	4.8:13.2
N _{1 kpc}	0:70.5	0:0	0:0	38.4:0	38.4:70.5

Binary fraction

-type < 10 AU) Metal-poor Giant SBs (Carney+03; Hansen+15,16a) ∨ 0.6 <u>○</u> Solar-Kepler EBs (Kirk+16) Fraction corrected 0.4 · Bias-c se Binary -----Volume Limited (Raghavan+10) APOGEE RV Variables (Badenes+18) Close High-Proper-Motion SBs (Latham+02) -3 -2 0 — 1 [Fe/H]

Moe+19

